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A cluster series expansion technique for spectral solution of vibration problems is
presented. In this technique the eigenfunction approximations are composed of clusters of
single basis functions instead of the classical Fourier series of single basis functions. To
realize the cluster expansion an alternating "xed-free subspace strategy is used to improve
the coe$cients of the single basis functions inside the clusters. This strategy generates
a family of m-step iterative algorithms solving large dense matrix eigenproblem of order m.n
as a few dense matrix eigenproblems of order n#(m!1)l, where l denotes the number of
computed eigenvalues. The computational behaviour of the proposed m-step algorithms is
investigated by solving matrix eigenproblems up to the order 3600 by using the m-step
algorithms for m"2, 3, 4, 5.
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1. INTRODUCTION

The methods for solving matrix eigenproblems are very important tools of research in
mechanical engineering, quantum chemistry and many other scienti"c disciplines [1].
Starting in 1846, when Jacobi wrote his famous paper on solving the symmetric eigenvalue
problem Au"ju, the number of new methods and various improvements of the known
methods has grown rapidly [1}4]. At present the scienti"c community has a great choice of
methods for solving the majority of their matrix eigenproblems together with e!ective and
reliable software [5}7] freely available on the Internet (http://www.netlib.org). The solution
of the remaining eigenvalue problems which are very large ('107) and sparse, large ('105)
and dense or non-symmetric may be very di$cult or impossible. This is the reason why new
methods and improvements of the known ones are of permanent interest for the
computational scientists.

The aim of this article is to present a new iterative algorithm for solving large dense matrix
eigenproblems resulting from the variational solution of the vibration problems using spectral
basis functions. As presented in our computational experiments, the proposed algorithm is
able to save great amount of main computer memory and CPU time as well.

2. OUTLINE OF THE METHOD

In the variational solution of a vibration problem

A/"j/, (1)
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one seeks minima of the corresponding Rayleigh quotient

(A/, /)/(/, /) (2)

over a "nite-dimensional subspace of the space of square-integrable functions ¸
2
(X ) [8].

Denoting u
i
, i"1, 2,2 , a basis system of ¸

2
(X ), the desired functions /

k,n
minimizing

expression (2) over the n-dimensional subspace generated by the basis functions
u
1
, u

2
,2 , u

n
can be written in the form

/
k
+/

k,n
"

n
+
i/1

ck
i
u

i
. (3)

Here the eigenvectors ck and the corresponding eigenvalues j
k,n

, which are the upper
bounds of the exact eigenvalues j

k
, solve the generalized matrix eigenproblem

Ac"jBc, (4)

where a
ij
"(Au

i
, u

j
), and b

ij
"(u

i
, u

j
).

The usual procedure for improving the approximations /
k,n

and j
k,n

is to use more basis
functions and, consequently, to solve larger matrix eigenproblems (4). The important
question now is*is it possible to use more basis functions without solving larger matrix
eigenvalue problems? To answer this question one can try to approximate the eigenfunctions
/
k

of equation (1) by clusters of basis functions instead of the single basis functions; i.e.,
instead of the truncated Fourier series (3) one can try to expand /

k
in the series of clusters

Uk
i

as

/
k
+

m
+
i/1

Ck
i
Uk

i
, k"1, 2,2 , l, (5)

where each cluster Uk
i
is linear combination of n basis functions u

(i~1)*n`j
for j"1, 2,2 , n.

To realize this idea it is necessary to improve the coe$cients of the single basis functions
u
j

inside the clusters Uk
i

alternately. For this reason one can use, say, an alternating
"xed-free subspace strategy, which is certainly used in practice in di!erent forms and in
di!erent situations as for example in reference [9], where separable nonlinear least squares
problems are solved by alternating improvement of partitioned variables.

2.1. TWO-STEP ALGORITHM

Assume that u
i
, i"1, 2,2 , are orthonormal basis functions and the clusters Uk

1
are the

variational approximations of the "rst l eigenfunctions of equation (1) achieved by
minimizing expression (2), by using n basis functions u

i
: i.e.,

Uk
1
"

n
+
i/1

ak
1,i

u
i
, k"1, 2,2 , l. (6)

Starting with these initial approximations the following two-step algorithm describes
a simple way of how to improve the single clusters Uk

1
and Uk

2
with essential saving of main

computer memory.
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First step. Consider the set of trial functions

U1
1
, U2

1
,2 , Ul

1
,u

n`1
,u

n`2
,2, u

2n
. (7)

The minimization of expression (2) by using these trial functions leads to the solution of the
partial matrix eigenproblem

A
(AUi

1
, U j

1
)

(Au
n`r

, U j
1
)

(AUi
1
,u

n`s
)

(Au
n`r

, u
n`s

)B c"jA
(Ui

1
, U j

1
)

0

0

EB c, (8)

where E is an n]n identity matrix. In this step as well as in the second one the indices i, j, r,
s range as follows: 1)i, j)l, 1)r, s)n; and the whole matrices are of order l#n. The
eigenfunction approximations /

k,2n
resulting from equation (8) are of the form

/
k,2n

"

l

+
i/1

ck
i
Ui

1
#

n
+
i/1

ckl`i
u
n`i

, k"1, 2,2 , l (9)

and the improved clusters Uk
2

may be de"ned as Uk
2
"+n

i/1
ckl`i

u
n`i

. If the algorithm
iterates (one iteration is composed by the solution of the eigenvalue problems (8) and (11)),
then ck

i
P0 for iOk and i)l and, consequently, /

k,2n
Pck

k
Uk

1
#Uk

2
. This is expected

behaviour, because the clusters Ui
1

are composed of the same basis functions u
1
, u

2
,2, u

n
and only one of them, Uk

1
, may participate in the "nal cluster expansion (5) of /

k
.

Consequently, the cluster coe$cients Ck
i

in equation (5) may be determined as C1
1
"c1

1
,

C2
1
"c2

2
,2, Cl

1
"cll , and Ck

2
"1 for k"1, 2,2 , l. The same situation happens also in

equations (12) to follow and will not be commented on there.
Second step. Consider the set of trial functions

U1
2
, U2

2
,2, Ul

2
, u

1
, u

2
,2 , u

n
, (10)

where Uk
2

are de"ned in equation (9). The minimization of expression (2) using these trial
functions leads to the solution of the partial matrix eigenproblem

A
(AUi

2
, Uj

2
)

(Au
r
, Uj

2
)

(AUi
2
, u

s
)

(Au
r
, u

s
)B c"jA

(Ui
2
, Uj

2
)

0

0

EB c. (11)

The eigenfunction approximations /
k,2n

resulting from equation (11) are of the form

/
k,2n

"

l

+
i/1

ck
i
Ui

2
#

n
+
i/1

ckl`i
u
i

k"1, 2,2 , l (12)

and the improved clusters Uk
1
may be de"ned as Uk

1
"+n

i/1
ckl`i

u
i
. If the accuracy of j

k,2n
is

not su$cient, go back to the "rst step.
While the usual procedure for computing /

k,2n
consists of the minimization of expression

(2) at once over the whole 2n-dimensional subspace generated by u
1
, u

2
,2 , u

2n
, the

presented alternating "xed-free subspace strategy enables one to improve Uk
1

and Uk
2

alternately. Firstly, Uk
2

are improved over the n-dimensional subspace generated by
u
n`1

, u
n`2

,2 , u
2n

with respect to Uk
1
(in this step u

1
, u

2
,2, u

n
are "xed in Uk

1
) improved

in the second step of the previous iteration. Secondly, Uk
1

are improved over the
n-dimensional subspace generated by u

1
, u

2
,2, u

n
, with respect to Uk

2
(in this step

u
n`1

, u
n`2

,2, u
2n

, are "xed in Uk
2
) improved in the "rst step of the previous iteration.

This algorithm alternately improving Uk
1

and Uk
2

is then repeated until convergence.
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In principle the algorithm can be generalized also for the case when the used basis system
is split into any &&reasonable'' number of subsystems.

2.2. THREE-STEP ALGORITHM

If the basis system is split into three subsystems we can derive the three-step algorithm. As
the initial approximations the clusters Uk

1
and Uk

2
computed by the two-step algorithm

using 2n basis functions u
1
, u

2
,2 , u

2n
can be used.

First step. Consider the set of trial functions

U1
1
, U2

1
,2 , Ul

1
,U1

2
, U2

2
,2 , Ul

2
,u

2n`1
, u

2n`2
,2 , u

3n
, (13)

where the clusters Uk
1

and Uk
2

are improved in the second and the third step of the previous
iteration, respectively. Similarly as in the two-step algorithm the minimization of expression
(2) using the trial functions (13) leads to the solution of the partial matrix eigenproblem

A
(AUi

1
, Uj

1
) (AUi

1
, Uj

2
) (AUi

1
,u

2n`s
)

(AUi
2
, U j

1
) (AUi

2
, Uj

2
) (AUi

2
,u

2n`s
)

(Au
2n`r

, U j
1
) (Au

2n`r
, U j

2
) (Au

2n`r
, u

2n`s
)B c"j A

(Ui
1
, Uj

1
) 0 0

0 (Ui
2
, Uj

2
) 0

0 0 EB c .

(14)

In this as well as in the following two steps the submatrix indices i, j, r, s range as follows:
1)i, j)l, 1)r, s)n; and the whole matrices are of order 2l#n. The eigenfunction
approximations /

k,3n
resulting from equation (14) are of the form

/
k,3n

"

l

+
i/1

ck
i
Ui

1
#

l

+
i/1

ckl`i
Ui

2
#

n
+
i/1

ck
2l`i

u
2n`i

, k"1, 2,2, l (15)

and the improved clusters Uk
3

may be de"ned as Uk
3
"+n

i/1
ck
2l`i

u
2n`i

. If the algorithm
iterates (one iteration is composed by the solution of the eigenvalue problems (14), (17), and
(20)), similarly as in equations (9) and (12), ck

i
P0 and ckl`i

P0 for iOk and i)l. This
convergence immediately provides the cluster expansion coe$cients Ck

i
in equation (5) of

the form Ck
1
"ck

k
, Ck

2
"ckl`k

, and Ck
3
"1 for k"1, 2,2, l. The same situation happens

also in equations (18) and (21) and will not be commented on there.

Second step. Consider the set of trial functions

U1
2
, U2

2
,2, Ul

2
, U1

3
,U2

3
,2, Ul

3
,u

1
, u

2
,2 , u

n
, (16)

where Uk
3

are de"ned in equation (15). The minimization of expression (2) using these trial
functions leads to the solution of the partial matrix eigenproblem

A
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2
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2
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)
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3
) (AUi

3
,u

s
)
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2
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3
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r
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s
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2
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2
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3
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3
) 0
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(17)
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The eigenfunction approximations /
k,3n

resulting from equation (17) are of the form

/
k,3n

"

l

+
i/1

ck
i
Ui

2
#

l

+
i/1

ckl`i
Ui

3
#

n
+
i/1

ck
2l`i

u
i
, k"1, 2,2 , l (18)

and the improved clusters Uk
1

may be de"ned as Uk
1
"+n

i/1
ck
2l`i

u
i
.

¹hird step. Consider the set of trial functions

U1
1
, U2

1
,2 , Ul

1
, U1

3
, U2

3
,2 , Ul

3
,u

n`1
, u

n`2
,2 , u
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, (19)

where Uk
1

are de"ned in equation (18). The minimization of expression (2) using these trial
functions leads to the solution of the partial matrix eigenproblem

A
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1
, U j

1
) (AUi

1
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3
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1
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)
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3
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1
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3
, U j
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3
, u

n`s
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1
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3
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1
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1
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3
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(20)

The eigenfunction approximations /
k,3n

resulting from equation (20) are of the form

/
k,3n

"

l

+
i/1
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i
Ui

1
#

l

+
i/1

ckl`i
Ui

3
#

n
+
i/1
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2l`i

u
n`i

, k"1, 2,2 , l (21)

and the improved clusters Uk
2

may be de"ned as Uk
2
"+n

i/1
ck
2l`i

u
n`i

. If the accuracy of
j
k,3n

is not su$cient go back to the "rst step.
The four-step and "ve-step algorithms, also considered in our computational

experiments, will start with the trial functions

U1
1
, U2

1
,2, Ul

1
, U1

2
, U2

2
,2, Ul

2
, U1

3
, U2

3
,2 , Ul

3
, u

3n`1
, u

3n`2
,2, u

4n
(22)

and

U1
1
, U2

1
,2 , Ul

1
, U1

2
, U2

2
,2 , Ul

2
, U1

3
, U2

3
,2 , Ul

3
, U1

4
, U2

4
,2 , Ul

4
,

u
4n`1

, u
4n`2

,2, u
5n

, (23)

respectively.

3. COMPUTATIONAL EXPERIMENTS

The behaviour of the presented algorithms has been investigated in the variational
solution of the eigenvalue problem

!Du#exeyu"ju on X"(0,n)](0,n), (24)

subject to the homogeneous Dirichlet boundary condition u"0 on LX. While the methods
and software for solving large sparse matrix eigenproblems are well developed, it is the
intention of this study to concentrate upon the solution of dense problems. When using the
sine basis functions and arti"cial coe$cient exey in equation (24), the resulting matrices
generated by the scalar product (Au

i
, u

j
) are dense.
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In the "rst four tables the experiments with the two-, three-, four-, and "ve-step
algorithms are reported. These tables show how many iterations are needed in order to
compute the "rst three eigenvalues of the corresponding matrices with the accuracy of at
least 13 signi"cant "gures. In these tables only the number of iterations in the m-step
algorithm (without computing initial cluster approximations) are shown. The initial cluster
approximations Uk

s
(k"1, 2,2, l; s"1, 2,2, m!1) needed for the m-step algorithm

have been computed iteratively starting from the two-step algorithm giving Uk
s
(k"1, 2, 3;

s"1, 2), then followed by the three-step algorithm giving Uk
s
(k"1, 2, 3; s"1, 2, 3), and

"nally by the four-step algorithm giving Uk
s
(k"1, 2, 3; s"1, 2, 3, 4). In these computations

one iteration in each step was su$cient in order to give good initial cluster approximations
for the m-step algorithm. There is also a possibility to obtain the initial cluster
approximations directly by solving the "rst m!1 neighbouring main submatrix
eigenproblems of order n resulting from the original matrix eigenproblem (4) of order
N"m.n. However, as seen in Table 5 for the "ve-step algorithm, the convergence is slower
than in the previous case.

Standard matrix eigenproblems have been solved by the subroutine NSHOUD
(Householder-bisection-QR-inverse iteration) and generalized partial matrix eigenproblems
TABLE 3

Number of iterations of the four-step algorithm in computing the ,rst three eigenvalues of
equation (24) using N basis functions

N"4n 120 240 420 900 1800 2400 3600

j
1

7 7 5 3 2 2 2
j
2

11 7 6 4 3 2 2
j
3

12 7 7 5 3 2 2

TABLE 2

Number of iterations of the three-step algorithm in computing the ,rst three eigenvalues of
equation (24) using N basis functions

N"3n 120 240 420 900 1800 2400 3600

j
1

6 6 4 3 2 2 2
j
2

10 8 5 4 3 3 3
j
3

10 9 7 4 3 3 3

TABLE 1

Number of iterations of the two-step algorithm in computing the ,rst three eigenvalues of
equation (24) using N basis functions

N"2n 120 240 420 900 1800 2400 3600

j
1

7 5 4 3 3 2 2
j
2

7 6 4 3 3 2 2
j
3

8 6 5 3 3 3 2



TABLE 4

Number of iterations of the ,ve-step algorithm in computing the ,rst three eigenvalues of
equation (24) using N basis functions

N"5n 120 240 420 900 1800 2400 3600

j
1

7 6 6 3 2 2 2
j
2

10 9 7 4 2 2 2
j
3

11 10 8 4 2 2 2

TABLE 5

Number of iterations of the ,ve-step algorithm in computing the ,rst three eigenvalues of
equation (24) using N basis functions (initial approximations are computed directly from

diagonal submatrices)

N"5n 120 240 420 900 1800 2400 3600

j
1

11 9 8 6 5 4 4
j
2

13 11 10 7 5 5 4
j
3

15 13 11 8 5 5 4
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by the subroutine NGHOUD (simultaneous triangular decomposition#NSHOUD) from
the package NICER [10]. To speed up the computations it would be probably suitable to
transform the generalized partial matrix eigenproblems into the standard form. This is
advantageous owing to block-diagonal structure of the right-hand side matrices B.

4. PERFORMANCE DISCUSSION

In this section a discussion is presented of the two most important practical aspects of the
proposed cluster series expansion technique (CSET) as amount of the #oating point
operations and size of the used main computer memory. While the cost of the QR solution
(QRsol) of one dense matrix eigenproblem of order N"m .n scales as N3, i.e.,
QRsol"m3 .n3, the cost of a few iterations (I¹sol) of the m-step algorithm, solving m partial
matrix eigenproblems of order n#(m!1)l in each iteration, scales as
I¹sol"iter.m(n#(m!1)l)3. Here iter is number of iterations of the used m-step
algorithm and l is number of the computed eigenvalues. Therefore, the theoretical
performance acceleration parameter ACC

t
of the m-step algorithm in comparison with an

O(n3) QR solver may be estimated as

ACC
t
"

QRsol

I¹sol
"

m3 .n3

iter .m(n#(m!1)l)3
+

m2

iter
, (25)

where the assumption n is large enough implies n#(m!1)l+n. The dependence of ACC
t

with respect to m and N, based on the values iter reported in Tables 1}4, is shown in
Table 6. As seen in this table ACC

t
increases if both parameters m and N increases and,

consequently, one can expect more e$cient behaviour of the proposed algorithm for m'5
and N'3600. Because the values in Table 6 are only theoretical and based on high-quality
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initial cluster approximations computed iteratively using a few iterations in each previous
m-step algorithm, it is of interest to investigate a more practical and simpler case, when the
initial cluster approximations are computed directly. In Table 7 the actual CPU time (t

5
) for

the "ve-step algorithm is shown, for the NICER QR solution (t
QR

) of the original problem
(24) using N basis functions, the actual performance acceleration parameter ACC

a
"t

QR
/t

5
and the theoretical values ACC

t
based on expression (25) and the number of iterations

reported in Table 5 for j
3
. Note that the values of iterations reported in Table 5 correspond

to the initial cluster approximations computed directly from four matrix eigenproblems (4)
of order n"N/5 corresponding to the following four sets of basis functions*Mu

1
,

u
2
,2, u

n
N, Mu

n`1
, u

n`2
,2, u

2n
N, Mu

2n`1
, u

2n`2
,2, u

3n
N, and Mu

3n`1
, u

3n`2
,2, u

4n
N

giving Ui
1
, Ui

2
, Ui

3
and Ui

4
(i"1, 2, 3), respectively, for each N under consideration. These

initial cluster approximations are more advantageous from a practical point of view than the
ones computed iteratively, although, as seen in Tables 1}4, the initial cluster approximations
computed iteratively are more accurate. The visible discrepancy between ACC

a
and ACC

t
in

Table 7 is caused mainly by neglecting the CPU time needed for creating the partial matrix
eigenproblems (e.g., equations (8) and (11) in the two-step algorithm). However, as shown in
Table 8 the CPU time (t

c
) needed for creating the corresponding matrix eigenproblems is not

negligible in comparison with the CPU time (t
s
) of their solution.

To save the CPU time in the solution of large matrix eigenproblems it is necessary to
keep the whole matrix array in the main computer memory in order to avoid expensive data
transfer between the main and secondary storage. Also the comparison of the main memory
requirement between a QR solution (QRmem) and the iterative m-step algorithm (I¹mem) is
TABLE 7

¹he CP; time (t
QR

) needed for the QR solution of equation (24), the CP; time (t
5
) needed for

the ,ve-step CSE¹ solution of equation (24) using N basis functions, the actual performance
acceleration ACC

a
"t

QR
/t

5
and the corresponding theoretical values ACC

t
"m2/iter based

on iter from ¹able 5; timings are given in seconds

N 120 240 420 900 1800 2400 3600

t
QR

0)22 1)41 9)57 105)25 866)17 2068)71 7799)38
t
5

2)97 11)48 32)14 90)12 281)78 671)03 2202)41
ACC

a
0)07 0)12 0)30 1)17 3)07 3)08 3)54

ACC
t

1)67 1)92 2)27 3)13 5)00 5)00 6)25

TABLE 6

¹heoretical performance acceleration of the m-step algorithms using iteratively computed
initial cluster approximations in comparison with the QR (O(n3) operations) solution of matrix

eigenproblems of order N

N Two-step Three-step Four-step Five-step

120 0)50 0)90 1)33 2)27
240 0)67 1)00 2)29 2)50
420 0)80 1)29 2)29 3)13
900 1)00 2)25 3)20 6)25

1800 1)33 3)00 5)33 12)50
3600 2)00 4)50 8)00 12)50



TABLE 8

¹he CP; time (t
c
) needed for creating the partial eigenproblems of order N/5#12

corresponding to the ,ve-step CSE¹ solution of equation (24) using N basis functions and the
CP; time (t

s
) used for their solution; timings are given in seconds

N 120 240 420 900 1800 2400 3600

t
c

0)06 0)17 0)55 2)63 10)77 19)12 43)58
t
s

* 0)05 0)22 1)87 17)41 48)02 176)71
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optimistic. If the assumption (m!1) l(n is considered, then

QRmem

I¹mem
"

m2n2

(n#(m!1)l)2
'

m2 n2

4n2
"

m2

4
. (26)

Similarly, the assumption (m!1)l(n/3 implies the estimation QRmem/Itmem'9m2/16.
In this case, using the "ve-step algorithm one needs 14 times less memory than using a QR
algorithm working with the whole matrix.

5. CONCLUDING REMARKS

The computational experiments reported in the "rst four tables warrant one to expect
that the algorithm could work e!ectively also for m'5. The expectation is supported by
computational experiments with the solution of systems of linear equations presented in
references [11] and [12], where higher step algorithms and larger matrices are considered.
Moreover, the partial matrix eigenproblems solved inside the iterations could be as large as
one is able to solve e!ectively and with su$cient accuracy, i.e., essentially larger than 732 in
the solution of equation (4) by the "ve-step CSET using N"3600 basis functions. Finally,
the optimization of these two features of the proposed algorithm, supported by the newest
achievments in parallel computing, may reveal a new horizon in the solution of very large
dense matrix eigenproblems resulting from the solution of the vibration problems by using
spectral methods.

Unfortunately, the alternating "xed-free subspace strategy is not suitable for the use with
local approximation methods as the "nite element method and spline approximation. It this
case it is not clear how to "nd good initial approximations. The problem originates from the
fact that subsets of "nite element trial functions (representing clusters of FEM trial
functions) localized on a part of the whole domain X are identically zero on the remaining
part of the domain and cannot give neither good nor reasonable approximation of an
eigenfunction of equation (1) localized on the whole domain X. Although the algorithm
works also in this case, the convergence of the resulting eigenvalue approximations is
extremely slow and the use of the multigrid methods [13, 14] is recommended.

The computations presented in this article have been carried out on a personal computer
with 150 MHz Pentium processor, 128 MB RAM, and 32-bit Microsoft Fortran
PowerStation Professional Development System working under Windows 95.
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